Deterministic gathering of anonymous agents in arbitrary networks
نویسندگان
چکیده
A team consisting of an unknown number of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node. Agents are anonymous (identical), execute the same deterministic algorithm and move in synchronous rounds along links of the network. An initial configuration of agents is called gatherable if there exists a deterministic algorithm (even dedicated to this particular configuration) that achieves meeting of all agents in one node. Which configurations are gatherable and how to gather all of them deterministically by the same algorithm? We give a complete solution of this gathering problem in arbitrary networks. We characterize all gatherable configurations and give two universal deterministic gathering algorithms, i.e., algorithms that gather all gatherable configurations. The first algorithm works under the assumption that an upper bound n on the size of the network is known. In this case our algorithm guarantees gathering with detection, i.e., the existence of a round for any gatherable configuration, such that all agents are at the same node and all declare that gathering is accomplished. If no upper bound on the size of the network is known, we show that a universal algorithm for gathering with detection does not exist. Hence, for this harder scenario, we construct a second universal gathering algorithm, which guarantees that, for any gatherable configuration, all agents eventually get to one node and stop, although they cannot tell if gathering is over. The time of the first algorithm is polynomial in the upper bound n on the size of the network, and the time of the second algorithm is polynomial in the (unknown) size itself. Our results have an important consequence for the leader election problem for anonymous agents in arbitrary graphs. Leader election is a fundamental symmetry breaking problem in distributed computing. Its goal is to assign, in some common round, value 1 (leader) to one of the entities and value 0 (nonleader) to all others. For anonymous agents in graphs, leader election turns out to be equivalent to gathering with detection. Hence, as a by-product, we obtain a complete solution of the leader election problem for anonymous agents in arbitrary graphs.
منابع مشابه
How to Meet in Anonymous Network
A set of k mobile agents with distinct identifiers and located in nodes of an unknown anonymous connected network, have to meet at some node. We show that this gathering problem is no harder than its special case for k = 2, called the rendezvous problem, and design deterministic protocols solving the rendezvous problem with arbitrary startups in rings and in general networks. The measure of per...
متن کاملDALD:-Distributed-Asynchronous-Local-Decontamination Algorithm in Arbitrary Graphs
Network environments always can be invaded by intruder agents. In networks where nodes are performing some computations, intruder agents might contaminate some nodes. Therefore, problem of decontaminating a network infected by intruder agents is one of the major problems in these networks. In this paper, we present a distributed asynchronous local algorithm for decontaminating a network. In mos...
متن کاملRendezvous of Mobile Agents without Agreement on Local Orientation
The exploration of a connected graph by multiple mobile agents has been previously studied under different conditions. A fundamental coordination problem in this context is the gathering of all agents at a single node, called the Rendezvous problem. To allow deterministic exploration, it is usually assumed that the edges incident to a node are locally ordered according to a fixed function calle...
متن کاملEfficient Distributed Communication in Ad-Hoc Radio Networks
We present new distributed deterministic solutions to two communication problems in n-node ad-hoc radio networks: rumor gathering and multi-broadcast. In these problems, some or all nodes of the network initially contain input data called rumors, which have to be learned by other nodes. In rumor gathering, there are k rumors initially distributed arbitrarily among the nodes, and the goal is to ...
متن کاملRoboCast: Asynchronous Communication in Robot Networks
This paper introduces the RoboCast communication abstraction. The RoboCast allows a swarm of non oblivious, anonymous robots that are only endowed with visibility sensors and do not share a common coordinate system, to asynchronously exchange information. We propose a generic framework that covers a large class of asynchronous communication algorithms and show how our framework can be used to i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1111.0321 شماره
صفحات -
تاریخ انتشار 2011